Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003573

RESUMO

Atopic dermatitis is a chronic condition where epidermal barrier dysfunction and cytokine production by infiltrating immune cells exacerbate skin inflammation and damage. A total lipid extract from Macrocystis pyrifera, a brown seaweed, was previously reported to suppress inflammatory responses in monocytes. Here, treatment of human HaCaT keratinocytes with M. pyrifera lipids inhibited tumour necrosis factor (TNF)-α induced TNF receptor-associated factor 2 and monocyte chemoattractant protein (MCP)-1 protein production. HaCaT cells stimulated with TNF-α, interleukin (IL)-4, and IL-13 showed loss of claudin-1 tight junctions, but little improvement was observed following lipid pre-treatment. Three-dimensional cultures of HaCaT cells differentiated at the air-liquid interface showed increased MCP-1 production, loss of claudin-1 tight junctions, and trans-epidermal leakage with TNF-α, IL-4, and IL-13 stimulation, with all parameters reduced by lipid pre-treatment. These findings suggest that M. pyrifera lipids have anti-inflammatory and barrier-protective effects on keratinocytes, which may be beneficial for the treatment of atopic dermatitis or other skin conditions.


Assuntos
Dermatite Atópica , Macrocystis , Humanos , Dermatite Atópica/metabolismo , Macrocystis/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-13/farmacologia , Interleucina-13/metabolismo , Claudina-1/metabolismo , Queratinócitos/metabolismo , Lipídeos/farmacologia , Citocinas/metabolismo
2.
In Vitro Cell Dev Biol Anim ; 59(1): 41-62, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36719554

RESUMO

In this review, animal cell lines are considered to have two classes of attributes: "before-the-fact" (ante factum) and "after-the-fact" (post factum) properties. Fish cell lines from Actinopterygii (ray-finned fishes) are used to illustrate this distinction and to demonstrate how these properties can be used in various ways to categorize cell lines into groups or invitromes. Before-the-fact properties are set at initiation and are properties of the sample and species from which the cell line arose and of the scientist(s) who developed the cell line. On the basis of the Actinopterygii sample, invitromes exist for embryos, larvae, juveniles, adults, and spawning fish, and for most solid organs but rarely for biological fluids. For species, invitromes exist for only a small fraction of the Actinopterygii total. As to their development, scientists from around the world have contributed to invitromes. By contrast, after-the-fact properties are limitless and become apparent during development, characterization, use, and storage of the cell line. For ray-finned invitromes, cell lines appear to acquire immortality during development, are characterized poorly for differentiation potential, have numerous uses, and are stored formally only sporadically. As an example of applying these principles to a specific organ, the skeletal muscle invitrome is used. For ante factum properties, the cell lines are mainly from trunk muscle of economically important fish from 11 orders, 15 families, 19 genera, and 21 species of ray-finned fishes. For post factum properties, fibroblast-like and myogenic cell lines have been described but epithelial-like FHM is most widely used and curated. Considering cell lines by their before- and after-the-fact properties should facilitate integration of new cell lines into the literature and help incorporate the discipline of cell biology into other research areas, particularly the natural history of fishes.


Assuntos
Evolução Molecular , Peixes , Animais , Larva , Linhagem Celular , Filogenia
3.
In Vitro Cell Dev Biol Anim ; 58(10): 922-935, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36378268

RESUMO

Chrysophrys auratus (Australasian snapper) is one of the largest and most valuable finfish from capture fisheries in New Zealand, yet no cell lines from this species are reported in the scientific literature. Here, we describe a muscle-derived cell line initiated from the tail of a juvenile snapper which has been designated CAtmus1PFR (Chrysophrys auratus, tail muscle, Plant & Food Research). The cell line has been passaged over 100 times in 3 years and is considered immortal. Cells are reliant on serum supplementation for proliferation and exhibit a broad thermal profile comparable to the eurythermic nature of C. auratus in vivo. The impact of exogenous growth factors, including insulin-like growth factors I and II (IGF-I and IGF-II), basic fibroblast growth factor (bFGF), and transforming growth factor beta (TGFß), on cell morphology and proliferation was investigated. Insulin-like growth factors acted as mitogens and had minimal effect on cell morphology. TGFß exposure resulted in CAtmus1PFR exhibiting a myofibroblast morphology becoming enlarged with actin bundling. This differentiation was confirmed through the expression of smooth muscle actin (sma), an increase in type 1 collagen (col1a) expression, and a loss of motility. Expression of col1a and sma was decreased when cells were exposed to bFGF, and no actin bundling was observed. These data indicate that CAtmus1PFR may be myofibroblastic precursor cells descending from mesenchymal progenitor cells present in the tail muscle myosepta.


Assuntos
Miofibroblastos , Somatomedinas , Animais , Humanos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Músculos , Diferenciação Celular , Somatomedinas/metabolismo , População Australasiana , Actinas/metabolismo , Fator de Crescimento Transformador beta1 , Fibroblastos
4.
Trends Microbiol ; 29(2): 127-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32682632

RESUMO

Several intracellular bacterial pathogens, including Listeria monocytogenes, Shigella flexerni, and Rickettsia spp. use an actin-based motility process to spread in mammalian cell monolayers. Cell-to-cell spread is mediated by protrusive structures that contain bacteria encased in the host cell plasma membrane. These protrusions, which form in infected host cells, are internalized by neighboring cells. In this review, we summarize key findings on cell-to-cell spread, focusing on recent work on mechanisms of protrusion formation and internalization. We also discuss the dynamic behavior of bacterial populations during spread, and highlight recent findings showing that intercellular spread by an extracellular bacterial pathogen.


Assuntos
Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Actinas/metabolismo , Animais , Bactérias/genética , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos
5.
Proc Natl Acad Sci U S A ; 117(7): 3789-3796, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015134

RESUMO

The facultative intracellular pathogen Listeria monocytogenes uses an actin-based motility process to spread within human tissues. Filamentous actin from the human cell forms a tail behind bacteria, propelling microbes through the cytoplasm. Motile bacteria remodel the host plasma membrane into protrusions that are internalized by neighboring cells. A critical unresolved question is whether generation of protrusions by Listeria involves stimulation of host processes apart from actin polymerization. Here we demonstrate that efficient protrusion formation in polarized epithelial cells involves bacterial subversion of host exocytosis. Confocal microscopy imaging indicated that exocytosis is up-regulated in protrusions of Listeria in a manner that depends on the host exocyst complex. Depletion of components of the exocyst complex by RNA interference inhibited the formation of Listeria protrusions and subsequent cell-to-cell spread of bacteria. Additional genetic studies indicated important roles for the exocyst regulators Rab8 and Rab11 in bacterial protrusion formation and spread. The secreted Listeria virulence factor InlC associated with the exocyst component Exo70 and mediated the recruitment of Exo70 to bacterial protrusions. Depletion of exocyst proteins reduced the length of Listeria protrusions, suggesting that the exocyst complex promotes protrusion elongation. Collectively, these results demonstrate that Listeria exploits host exocytosis to stimulate intercellular spread of bacteria.


Assuntos
Exocitose , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CACO-2 , Quinases do Centro Germinativo/genética , Quinases do Centro Germinativo/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Listeria monocytogenes/genética , Listeriose/genética , Listeriose/metabolismo , Listeriose/fisiopatologia , Ligação Proteica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
Infect Immun ; 85(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28461391

RESUMO

The bacterial pathogen Listeria monocytogenes causes foodborne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some human cells through interaction of the bacterial surface protein InlB with the host receptor tyrosine kinase Met. InlB-dependent entry requires localized polymerization of the host actin cytoskeleton. The signal transduction pathways that act downstream of Met to regulate actin filament assembly or other processes during Listeria uptake remain incompletely characterized. Here, we demonstrate important roles for the human serine/threonine kinases mTOR and protein kinase C-α (PKC-α) in InlB-dependent entry. Experiments involving RNA interference (RNAi) indicated that two multiprotein complexes containing mTOR, mTORC1 and mTORC2, are each needed for efficient internalization of Listeria into cells of the human cell line HeLa. InlB stimulated Met-dependent phosphorylation of mTORC1 or mTORC2 substrates, demonstrating activation of both mTOR-containing complexes. RNAi studies indicated that the mTORC1 effectors 4E-BP1 and hypoxia-inducible factor 1α (HIF-1α) and the mTORC2 substrate PKC-α each control Listeria uptake. Genetic or pharmacological inhibition of PKC-α reduced the internalization of Listeria and the accumulation of actin filaments that normally accompanies InlB-mediated entry. Collectively, our results identify mTOR and PKC-α to be host factors exploited by Listeria to promote infection. PKC-α controls Listeria entry, at least in part, by regulating the actin cytoskeleton downstream of the Met receptor.


Assuntos
Proteínas de Bactérias/metabolismo , Endocitose , Interações Hospedeiro-Patógeno , Listeria monocytogenes/patogenicidade , Proteínas de Membrana/metabolismo , Proteína Quinase C-alfa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células HeLa , Humanos
7.
Infect Immun ; 84(6): 1826-1841, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068087

RESUMO

Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5ß, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes.


Assuntos
Citoesqueleto de Actina/metabolismo , Adesinas Bacterianas/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Interações Hospedeiro-Patógeno , Listeria monocytogenes/genética , Yersinia enterocolitica/genética , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfolipase D/genética , Fosfolipase D/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
8.
Hum Vaccin Immunother ; 12(8): 2059-2063, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-26905522

RESUMO

The Gram positive intracellular pathogen Listeria monocytogenes represents a promising vaccine or therapeutic DNA delivery vector that has been successfully administered to humans in clinical trials. However in generating Listeria mutants with therapeutic potential it is important to balance safety attenuation with efficacy. Here we show that L. monocytogenes mutants with a reduced capacity for murine gallbladder replication are capable of stimulating T cell responses in mice and protecting vaccinated animals from secondary challenge. Mutation of L. monocytogenes genes lmo2566 or lmo0598 resulted in significant attenuation in the murine model yet mutants retained a capacity for intracellular growth and stimulation of T cell responses against key Listeria epitopes (LLO91-99 and P60217-225). Importantly the mutants showed a reduced capacity for growth in the gallbladders of vaccinated mice as well as significantly reduced faecal shedding indicating that this approach generates live Listeria-based vector delivery systems with a reduced capacity for the spread of live genetically modified microorganisms into the natural environment.


Assuntos
Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/imunologia , Vesícula Biliar/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Listeriose/prevenção & controle , Fatores de Virulência/deficiência , Animais , Vacinas Bacterianas/administração & dosagem , Portadores de Fármacos , Listeria monocytogenes/imunologia , Camundongos Endogâmicos BALB C , Prevenção Secundária , Linfócitos T/imunologia
9.
Cell Microbiol ; 17(6): 876-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25529574

RESUMO

Listeria monocytogenes is a food-borne pathogen that uses actin-dependent motility to spread between human cells. Cell-to-cell spread involves the formation by motile bacteria of plasma membrane-derived structures termed 'protrusions'. In cultured enterocytes, the secreted Listeria protein InlC promotes protrusion formation by binding and inhibiting the human scaffolding protein Tuba. Here we demonstrate that protrusions are controlled by human COPII components that direct trafficking from the endoplasmic reticulum. Co-precipitation experiments indicated that the COPII proteins Sec31A and Sec13 interact directly with a Src homology 3 domain in Tuba. This interaction was antagonized by InlC. Depletion of Sec31A or Sec13 restored normal protrusion formation to a Listeria mutant lacking inlC, without affecting spread of wild-type bacteria. Genetic impairment of the COPII component Sar1 or treatment of cells with brefeldin A affected protrusions similarly to Sec31A or Sec13 depletion. These findings indicated that InlC relieves a host-mediated restriction of Listeria spread otherwise imposed by COPII. Inhibition of Sec31A, Sec13 or Sar1 or brefeldin A treatment also perturbed the structure of cell-cell junctions. Collectively, these findings demonstrate an important role for COPII in controlling Listeria spread. We propose that COPII may act by delivering host proteins that generate tension at cell junctions.


Assuntos
Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo , Enterócitos/microbiologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Células CACO-2 , Humanos , Locomoção , Mapeamento de Interação de Proteínas
10.
Cell Microbiol ; 16(9): 1311-20, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24948362

RESUMO

The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin-based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB-mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial-induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin-based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell-to-cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighbouring cells. The human GTPase Cdc42, its activator Tuba, and its effector N-WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42-GTP or Tuba/N-WASP interaction.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/enzimologia , Animais , Humanos , Listeriose/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
11.
Cell Microbiol ; 16(7): 1068-79, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24405483

RESUMO

The bacterial pathogen Listeria monocytogenes uses actin-based motility to spread from infected human cells to surrounding healthy cells. Cell-cell spread involves the formation of thin extensions of the host plasma membrane ('protrusions') containing motile bacteria. In cultured enterocytes, the Listeria protein InlC promotes protrusion formation by binding and antagonizing the human scaffolding protein Tuba. Tuba is a known activator of the GTPase Cdc42. In this work, we demonstrate an important role for Cdc42 in controlling Listeria spread. Infection of the enterocyte cell line Caco-2 BBE1 induced a decrease in the level of Cdc42-GTP, indicating that Listeria downregulates this GTPase. Genetic data involving RNA interference indicated that bacterial impairment of Cdc42 may involve inhibition of Tuba. Experiments with dominant negative and constitutively activated alleles of Cdc42 demonstrated that the ability to inactivate Cdc42 is required for efficient protrusion formation by Listeria. Taken together, these findings indicate a novel mechanism of bacterial spread involving pathogen-induced downregulation of host Cdc42.


Assuntos
Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Células CACO-2 , Extensões da Superfície Celular/metabolismo , Regulação para Baixo , Repressão Enzimática , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Junções Intercelulares/enzimologia , Junções Intercelulares/ultraestrutura , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/ultraestrutura , Listeriose/enzimologia , Proteína cdc42 de Ligação ao GTP/genética
12.
Infect Immun ; 80(3): 1252-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22158742

RESUMO

The bacterial pathogen Listeria monocytogenes causes food-borne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria promotes its internalization into some human cells through binding of the bacterial surface protein InlB to the host receptor tyrosine kinase Met. The interaction of InlB with the Met receptor stimulates host signaling pathways that promote cell surface changes driving bacterial uptake. One human signaling protein that plays a critical role in Listeria entry is type IA phosphoinositide 3-kinase (PI 3-kinase). The molecular mechanism by which PI 3-kinase promotes bacterial internalization is not understood. Here we perform an RNA interference (RNAi)-based screen to identify components of the type IA PI 3-kinase pathway that control the entry of Listeria into the human cell line HeLa. The 64 genes targeted encode known upstream regulators or downstream effectors of type IA PI 3-kinase. The results of this screen indicate that at least 9 members of the PI 3-kinase pathway play important roles in Listeria uptake. These 9 human proteins include a Rab5 GTPase, several regulators of Arf or Rac1 GTPases, and the serine/threonine kinases phosphoinositide-dependent kinase 1 (PDK1), mammalian target of rapamycin (mTor), and protein kinase C-ζ. These findings represent a key first step toward understanding the mechanism by which type IA PI 3-kinase controls bacterial internalization.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/patogenicidade , Transdução de Sinais , Proteínas de Bactérias/metabolismo , Inativação Gênica , Testes Genéticos , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/metabolismo
13.
FEMS Microbiol Lett ; 327(2): 118-25, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22133190

RESUMO

Listeria monocytogenes is a Gram positive pathogen that is ubiquitous in the environment. It is a facultative anaerobic rod that causes listeriosis, a disease with potentially lethal consequences for susceptible individuals. During infection, the pathogen is capable of sequestering metal ions to act as vital biocatalysts in cellular processes. The zinc uptake regulator (ZurR) is predicted to coordinate uptake of zinc from the external environment. An in-frame deletion of the zurR gene resulted in a mutant exhibiting a small colony phenotype and a smaller cell size. The zurR mutant was unaffected under conditions of zinc limitation but demonstrated increased sensitivity to toxic levels of zinc. The mutant also demonstrated a significant (1-log) reduction in virulence potential in the murine model of infection. Using a bioinformatic approach, we identified a number of potentially Zur-regulated genes in the genome of L. monocytogenes. Quantitative RT-PCR demonstrated significant de-repression of zurA, lmo0153, and lmo1671 in the zurR mutant background indicating that these putative transporters are ZurR regulated.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Proteínas Repressoras/metabolismo , Animais , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Repressoras/genética , Zinco/metabolismo
14.
Infect Immun ; 79(1): 369-79, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937762

RESUMO

The food-borne pathogen Listeria monocytogenes is known to colonize the lumen of the gallbladder in infected mice and to grow rapidly in this environment (J. Hardy et al., Science 303:851-853, 2004). However, relatively little is known about the mechanisms utilized by the pathogen to survive and grow in this location. We utilized gallbladder bile (GB bile) isolated directly from porcine gallbladders as an ex vivo model of gallbladder growth. We demonstrate that GB bile is generally nontoxic for bacteria and can readily support growth of a variety of bacterial species including L. monocytogenes, Lactococcus lactis, Salmonella enterica serovar Typhimurium, and Escherichia coli. Significantly, L. monocytogenes grew at the same rate as the nonpathogenic species Listeria innocua, indicating that the pathogen does not possess specialized mechanisms that enable growth in this environment. However, when we reduced the pH of GB bile to pH 5.5 in order to mimic the release of bile within the small intestine, the toxicity of GB bile increased significantly and specific resistance mechanisms (Sigma B, BSH, and BilE) were essential for survival of the pathogen under these conditions. In order to identify genetic loci that are necessary for growth of L. monocytogenes in the gallbladder, a mariner transposon bank was created and screened for mutants unable to replicate in GB bile. This led to the identification of mutants in six loci, including genes encoding enzymes involved in purine metabolism, amino acid biosynthesis, and biotin uptake. Although GB bile does not represent a significant impediment to bacterial growth, specific metabolic processes are required by L. monocytogenes in order to grow in this environment.


Assuntos
Bile/microbiologia , Vesícula Biliar/microbiologia , Listeria monocytogenes/citologia , Listeria monocytogenes/fisiologia , Suínos/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Listeria monocytogenes/ultraestrutura , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...